login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336530
Number of triples of divisors d_i < d_j < d_k of n such that gcd(d_i, d_j, d_k) > 1.
3
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 4, 0, 5, 0, 5, 0, 0, 0, 23, 0, 0, 1, 5, 0, 12, 0, 10, 0, 0, 0, 36, 0, 0, 0, 23, 0, 12, 0, 5, 5, 0, 0, 62, 0, 5, 0, 5, 0, 23, 0, 23, 0, 0, 0, 87, 0, 0, 5, 20, 0, 12, 0, 5, 0, 12, 0, 120, 0, 0, 5, 5, 0, 12, 0, 62, 4
OFFSET
1,12
COMMENTS
Number of elements in the set {(x, y, z): x|n, y|n, z|n, x < y < z, GCD(x, y, z) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n) = 0 for n = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, ... (Numbers with at most 2 prime factors (counted with multiplicity). See A037143);
a(n) = 1 for n = 8, 27, 125, 343, 1331, 2197, 4913,... (cubes of primes. See A030078);
a(n) = 4 for n = 16, 81, 625, 2401, 14641, 28561, ... (prime(n)^4. See A030514);
a(n) = 5 for n = 12, 18, 20, 28, 44, 45, ... (Numbers which are the product of a prime and the square of a different prime (p^2 * q). See A054753);
a(n) = 12 for n = 30, 42, 66, 70, 78, 102, 105, 110,... (Sphenic numbers: products of 3 distinct primes. See A007304);
a(n) = 20 for n = 64, 729, 15625, 117649, ... (Numbers with 7 divisors. 6th powers of primes. See A030516);
a(n) = 23 for n = 24, 40, 54, 56, 88, 104, 135, 136, ... (Product of the cube of a prime (A030078) and a different prime. See A065036);
a(n) = 36 for n = 36, 100, 196, 225, 441, 484, 676,... (Squares of the squarefree semiprimes (p^2*q^2). See A085986);
a(n) = 62 for n = 48, 80, 112, 162, 176, 208, 272, ... (Product of the 4th power of a prime (A030514) and a different prime (p^4*q). See A178739);
a(n) = 87 for n = 60, 84, 90, 126, 132, 140, 150, 156, ... (Product of exactly four primes, three of which are distinct (p^2*q*r). See A085987);
a(n) = 120 for n = 72, 108, 200, 392, 500, 675, 968, ... (Numbers of the form p^2*q^3, where p,q are distinct primes. See A143610);
It is possible to continue with a(n) = 130, 235, 284, 289, 356, ...
LINKS
EXAMPLE
a(12) = 5 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j, d_k) > 1 for the 5 following triples of divisors: (2,4,6), (2,4,12), (2,6,12), (3,6,12) and (4,6,12).
MAPLE
with(numtheory):nn:=100:
for n from 1 to nn do:
it:=0:d:=divisors(n):n0:=nops(d):
for i from 1 to n0-2 do:
for j from i+1 to n0-1 do:
for k from j+1 to n0 do:
if igcd(d[i], d[j], d[k])> 1
then
it:=it+1:
else
fi:
od:
od:
od:
printf(`%d, `, it):
od:
MATHEMATICA
Array[Count[GCD @@ # & /@ Subsets[Divisors[#], {3}], _?(# > 1 &)] &, 81] (* Michael De Vlieger, Oct 05 2020 *)
PROG
(PARI) a(n) = my(d=divisors(n)); sum(i=1, #d-2, sum (j=i+1, #d-1, sum (k=j+1, #d, gcd([d[i], d[j], d[k]]) > 1))); \\ Michel Marcus, Oct 31 2020
(PARI) a(n) = {my(f = factor(n), vp = vecprod(f[, 1]), d = divisors(vp), res = 0);
for(i = 2, #d, res-=binomial(numdiv(n/d[i]), 3)*(-1)^omega(d[i])); res} \\ David A. Corneth, Nov 01 2020
CROSSREFS
Cf. A275387.
Sequence in context: A216722 A368865 A036297 * A087935 A243829 A329639
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 04 2020
EXTENSIONS
Name clarified by editors, Oct 31 2020
STATUS
approved