login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336468 a(n) = A336466(phi(n)), where A336466 is fully multiplicative with a(p) = A000265(p-1) for prime p, with A000265(k) giving the odd part of k. 3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 5, 1, 1, 5, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,23

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537

FORMULA

a(n) = A336466(A000010(n)).

Multiplicative with a(p^e) = A336466(p-1) * A336466(p)^(e-1).

PROG

(PARI)

A000265(n) = (n>>valuation(n, 2));

A336468(n) = { my(f=factor(eulerphi(n))); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };

\\ Alternatively, as follows, requiring also code from A336466:

A336468(n) = { my(f=factor(n)); prod(k=1, #f~, A336466(f[k, 1]-1) * A336466(f[k, 1])^(f[k, 2]-1)); };

CROSSREFS

Cf. A000010, A000265, A336466, A336469.

Sequence in context: A291578 A165485 A179947 * A344757 A046623 A046602

Adjacent sequences:  A336465 A336466 A336467 * A336469 A336470 A336471

KEYWORD

nonn,mult

AUTHOR

Antti Karttunen, Jul 22 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 19:12 EDT 2021. Contains 345365 sequences. (Running on oeis4.)