login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336412 Number of labeled dihedral groups with a fixed identity. 1
1, 1, 20, 630, 18144, 3326400, 148262400, 40864824000, 6586804224000, 3041127510220800, 464463110651904000, 538583682060103680000, 99430833611096064000000, 129629398219266097152000000, 73681349947830849621196800000, 64240926985765022013480960000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
a(n) is the number of dihedral groups of order 2n with a fixed identity, or equivalently the number of reduced Latin squares of order 2n that can be viewed as the Cayley table of D_{2n}, by adding a border that matches the first row and column. The reduced Latin squares differ from each other by a permutation of their symbols. Two such Latin squares that differ by a permutation of their symbols have been called isoplanar by Bailey (1984), cited by Nilrat and Praeger (1988), cited by Denes and Keedwell (1991). Latin squares based on dihedral groups are of interest in the stable marriage problem, where Benjamin et al. (1995) exhibited such squares having many stable matchings when viewed as ranking matrices. Two isoplanar Latin squares generally produce a different number of stable matchings, so there is motivation to generate all symbol permutations to find the ones with the most stable matchings.
See comments in A002618 regarding automorphisms of dihedral groups by Ola Veshta and Yaghoub Sharifi. - Dan Eilers, Jun 08 2024
REFERENCES
Denes, J. and Keedwell, A. D. (1991) Latin Squares New Developments in the Theory and Applications. p. 98.
LINKS
R. A. Bailey, Quasi-Complete Latin Squares: Construction and Randomization, Journal of the Royal Statistical Society. Series B (Methodological) 46, no. 2 (1984): 330, 323-34.
A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
C. K. Nilrat and C. E. Prager, Complete latin squares: terraces for groups, Ars Combinatoria 24 (1988), 17-29.
E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Mathematics Volume 248, Issue 1-3, 6 April 2002, 195-219.
FORMULA
a(1) = a(2) = 1; a(n>2) = (2*n-1)! / A002618(n). - Dan Eilers, Jun 08 2024
EXAMPLE
For n=3 the a(3)=20 isoplanar reduced Latin squares based on the dihedral group of order 6, in lexicographical order, are:
1) 2) 3) 4) 5)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 1 4 3 6 5 2 1 4 3 6 5 2 1 4 3 6 5 2 1 4 3 6 5 2 1 5 6 3 4
3 5 1 6 2 4 3 5 6 2 4 1 3 6 1 5 4 2 3 6 5 2 1 4 3 4 1 2 6 5
4 6 2 5 1 3 4 6 5 1 3 2 4 5 2 6 3 1 4 5 6 1 2 3 4 3 6 5 1 2
5 3 6 1 4 2 5 3 2 6 1 4 5 4 6 2 1 3 5 4 1 6 3 2 5 6 2 1 4 3
6 4 5 2 3 1 6 4 1 5 2 3 6 3 5 1 2 4 6 3 2 5 4 1 6 5 4 3 2 1
6) 7) 8) 9) 10)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 1 5 6 3 4 2 1 5 6 3 4 2 1 5 6 3 4 2 1 6 5 4 3 2 1 6 5 4 3
3 4 6 5 2 1 3 6 1 5 4 2 3 6 4 1 2 5 3 4 1 2 6 5 3 4 5 6 1 2
4 3 2 1 6 5 4 5 6 1 2 3 4 5 1 3 6 2 4 3 5 6 2 1 4 3 2 1 6 5
5 6 4 3 1 2 5 4 2 3 6 1 5 4 6 2 1 3 5 6 4 3 1 2 5 6 1 2 3 4
6 5 1 2 4 3 6 3 4 2 1 5 6 3 2 5 4 1 6 5 2 1 3 4 6 5 4 3 2 1
11) 12) 13) 14) 15)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 1 6 5 4 3 2 1 6 5 4 3 2 3 1 5 6 4 2 3 1 6 4 5 2 4 5 1 6 3
3 5 1 6 2 4 3 5 4 1 6 2 3 1 2 6 4 5 3 1 2 5 6 4 3 6 1 5 4 2
4 6 5 1 3 2 4 6 1 3 2 5 4 6 5 1 3 2 4 5 6 1 2 3 4 1 6 2 3 5
5 3 4 2 6 1 5 3 2 6 1 4 5 4 6 2 1 3 5 6 4 3 1 2 5 3 2 6 1 4
6 4 2 3 1 5 6 4 5 2 3 1 6 5 4 3 2 1 6 4 5 2 3 1 6 5 4 3 2 1
16) 17) 18) 19) 20)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 4 6 1 3 5 2 5 4 6 1 3 2 5 6 3 1 4 2 6 4 5 3 1 2 6 5 3 4 1
3 5 1 6 2 4 3 6 1 5 4 2 3 4 1 2 6 5 3 5 1 6 2 4 3 4 1 2 6 5
4 1 5 2 6 3 4 3 2 1 6 5 4 6 5 1 3 2 4 3 2 1 6 5 4 5 6 1 2 3
5 6 4 3 1 2 5 1 6 3 2 4 5 1 4 6 2 3 5 4 6 2 1 3 5 3 2 6 1 4
6 3 2 5 4 1 6 4 5 2 3 1 6 3 2 5 4 1 6 1 5 3 4 2 6 1 4 5 3 2
PROG
(GAP) A336412:=List([1..16], n->Factorial(2*n-1)/Size(AutomorphismGroup(DihedralGroup(2*n)))); # Dan Eilers, Jun 08 2024
CROSSREFS
Cf. A058163 (all groups), A058162 (Abelian groups), A058161 (cyclic groups), A069156 (stable matchings), A002618 (n*phi(n)).
Sequence in context: A059420 A129906 A125722 * A226731 A201724 A006410
KEYWORD
nonn
AUTHOR
Dan Eilers, Jul 20 2020
EXTENSIONS
a(8)-a(16) and edited by Dan Eilers, Jun 08 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 08:12 EDT 2024. Contains 374442 sequences. (Running on oeis4.)