Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jan 30 2022 09:51:52
%S 1,1,2,1,3,2,4,1,3,3,5,2,5,4,6,1,7,3,8,3,9,5,10,2,11,5,12,4,13,6,14,1,
%T 7,7,8,3,15,8,16,3,17,9,18,5,19,10,20,2,5,11,21,5,19,12,22,4,13,13,22,
%U 6,20,14,23,1,24,7,11,7,17,8,16,3,25,15,26,8,18,16,27,3,15,17,18,9,28,18,29,5,26,19,30,10,31,20,32,2,8,5,21,11
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A331410(i) = A331410(j), for all i, j >= 1.
%C Restricted growth sequence transform of the ordered pair [A278222(n), A331410(n)].
%C For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).
%H Antti Karttunen, <a href="/A336394/b336394.txt">Table of n, a(n) for n = 1..65537</a>
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o A278222(n) = A046523(A005940(1+n));
%o A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1]))));
%o Aux336394(n) = [A278222(n), A331410(n)];
%o v336394 = rgs_transform(vector(up_to, n, Aux336394(n)));
%o A336394(n) = v336394[n];
%Y Cf. A003602, A278222, A324400, A331410, A336392.
%Y Cf. also A286622, A336473.
%K nonn,look
%O 1,3
%A _Antti Karttunen_, Aug 10 2020