login
A336361
Number of iterations of A000593 (sum of divisors of odd part of n) needed to reach a power of 2, or -1 if never reached.
13
0, 0, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 4, 3, 3, 2, 1, 2, 2, 1, 2, 2, 3, 1, 3, 2, 1, 0, 2, 4, 2, 3, 4, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 2, 4, 2, 4, 3, 4, 1, 3, 3, 3, 2, 2, 1, 3, 0, 2, 2, 5, 4, 2, 2, 4, 3, 5, 4, 2, 3, 2, 2, 3, 2, 5, 2, 2, 1, 4, 3, 3, 2, 4, 3, 2, 2, 1, 2, 3, 1, 5, 4, 3, 2, 5, 4, 3, 2, 2
OFFSET
1,5
COMMENTS
Also, for n > 1, one less than the number of iterations of A000593 to reach 1.
If there exists any hypothetical odd perfect numbers w, then the iteration will get stuck into a fixed point after encountering them, and we will have a(w) = a(2^k * w) = -1 by the escape clause.
LINKS
FORMULA
If A209229(n) = 1 [when n is a power of 2], a(n) = 0, otherwise a(n) = 1+a(A000593(n)).
a(n) = a(2n) = a(A000265(n)).
PROG
(PARI) A336361(n) = if(!bitand(n, n-1), 0, 1+A336361(sigma(n>>valuation(n, 2))));
CROSSREFS
Cf. A054784 (positions of 0's and 1's in this sequence).
Sequence in context: A277721 A023416 A080791 * A364260 A334204 A336362
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 30 2020
STATUS
approved