login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336176
Numbers k such that there is a single powerful number between k^2 and (k+1)^2.
5
2, 8, 10, 15, 16, 18, 19, 20, 28, 29, 37, 39, 41, 42, 45, 48, 50, 51, 52, 53, 56, 57, 59, 63, 65, 74, 76, 77, 78, 79, 83, 84, 87, 89, 90, 92, 94, 100, 101, 102, 107, 113, 114, 115, 116, 117, 118, 119, 121, 122, 126, 127, 130, 134, 138, 141, 144, 146, 147, 148
OFFSET
1,1
COMMENTS
Positions of 1's in A119241.
Shiu (1980) proved that this sequence has an asymptotic density 0.3955... A more accurate calculation using his formula gives 0.3955652153962362...
1 is the most common value of A119241.
REFERENCES
József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter VI, p. 226.
LINKS
P. Shiu, On the number of square-full integers between successive squares, Mathematika, Vol. 27, No. 2 (1980), pp. 171-178.
EXAMPLE
2 is a term since there is a single powerful number, 8 = 2^3, between 2^2 = 4 and (2+1)^2 = 9.
MATHEMATICA
powQ[n_] := (n == 1) || Min @@ FactorInteger[n][[;; , 2]] > 1; Select[Range[150], Count[Range[#^2 + 1, (# + 1)^2 - 1], _?powQ] == 1 &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 10 2020
STATUS
approved