login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336100
E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k).
2
1, -1, -3, -7, -15, 89, 1737, 21713, 266865, 3162089, 34737177, 352100033, 2848598145, -7655375911, -1359369828183, -50221626404047, -1460912626424175, -39804558811289911, -1080962878982246343, -29431779044695154527, -788320672341728128095, -20386762121171790275911
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * k! * A010815(k).
MATHEMATICA
m = 21; Range[0, m]! * CoefficientList[Series[Product[1 - (Exp[x] - 1)^k, {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Jul 08 2020 *)
A010815[k_] := (m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0]); Table[Sum[StirlingS2[n, k] * k! * A010815[k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 09 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1-(exp(x)-1)^k)))
(PARI) f(n) = if( issquare( 24*n + 1, &n), kronecker( 12, n)); \\ A010815
a(n) = sum(k=0, n, stirling(n, k, 2) * k! * f(k)); \\ Michel Marcus, Jul 09 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 08 2020
STATUS
approved