Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jul 09 2020 22:39:15
%S 1,4,12,6,80,32,2304,24,27,192,1114112,72,141733920768,5120,448,10,
%T 1199038364791120855040,108,43896425332801061786775324358698099277824,
%U 480,11264,2359296,29758566933990262223857743147232792318290386059069624958140599090033674317463552,192,405,292057776128,324,13824
%N a(n) = A038040(A225546(n)).
%C Question: Is it possible for a(n)/A331733(n) to be an integer when n is a square > 1? This is equivalent to the question whether there are odd Harmonic numbers (A001599) larger than one.
%F a(n) = A225546(n) * A331309(n).
%t Array[# DivisorSigma[0, #] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* _Michael De Vlieger_, Jul 08 2020 *)
%o (PARI)
%o A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
%o A335914(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,(1+A048675(prods[i]))*(prime(i)^A048675(prods[i]))));
%Y Cf. A001599, A038040, A225546, A331309.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jul 08 2020