login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A335823
Triangle read by rows: A080779 with rows reversed.
0
1, 1, 1, 2, 3, 1, 6, 12, 6, 0, 24, 60, 40, 0, -4, 120, 360, 300, 0, -60, 0, 720, 2520, 2520, 0, -840, 0, 120, 5040, 20160, 23520, 0, -11760, 0, 3360, 0, 40320, 181440, 241920, 0, -169344, 0, 80640, 0, -12096, 362880, 1814400, 2721600, 0, -2540160, 0, 1814400, 0, -544320, 0
OFFSET
1,4
FORMULA
T(n,k) = n!*(n-1)*(n-2)*...*(n-k+1)*(-1)^k*Bk/k! where Bk is a Bernoulli number and T(n,0) = (n-1)! and T(n,m) = 0 if m >= n.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 12, 6, 0;
24, 60, 40, 0, -4;
...
MATHEMATICA
Table[If[k == 0, (n - 1)!, n!*Product[n - j, {j, k - 1}]*(-1)^k*BernoulliB[k]/k!], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jun 27 2020 *)
PROG
(PARI) T(n, k) = if (k==0, (n-1)!, n!*prod(j=1, k-1, n-j)*(-1)^k*bernfrac(k)/k!);
tabl(nn) = for(n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jun 25 2020
CROSSREFS
Cf. A000142 (row sums).
Cf. A080779 (same triangle with rows reversed).
Cf. A027641/A027642 (Bernoulli numbers).
Sequence in context: A334951 A263634 A135894 * A247500 A375504 A075263
KEYWORD
sign,tabl
AUTHOR
John O. Oladokun, Jun 25 2020
STATUS
approved