|
|
A335799
|
|
a(n) is the least number k such that 3^k-2 and 3^k+2 are the product of n prime factors counted with multiplicity.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(9) >= 521, a(10) >= 368, a(11) >= 339, a(12) >= 551. - Chai Wah Wu, Sep 23 2020
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 2 because 3^2-2 = 7 and 3^2+2 = 11 are both prime.
|
|
MATHEMATICA
|
m = 6; s = Table[0, {m}]; c = 0; k = 1; While[c < m, n = PrimeOmega[3^k - 2]; If[n <= m && s[[n]] == 0, n2 = PrimeOmega[3^k + 2]; If[n2 == n, s[[n]] = k; c++]]; k++]; s (* Amiram Eldar, Sep 18 2020 *)
|
|
PROG
|
(PARI) a(n) = {my(k=1); while((bigomega(3^k-2) != n) || (bigomega(3^k+2) != n), k++); k; } \\ Michel Marcus, Sep 14 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|