OFFSET
0,6
LINKS
J. Huh and B. Kim, The number of equivalence classes arising from partition involutions, Int. J. Number Theory, 16 (2020), 925-939.
FORMULA
G.f.: 1/2*(Product_{n>=1} (1+q^n) + Product_{n>=1} (1+q^(3*n-2))*(1+q^(3*n-1))*(1-q^(3*n))).
EXAMPLE
a(10) = 5, the relevant partitions of 10 into distinct parts being [10], [8,2], [7,2,1], [6,3,1], [5,4,1].
PROG
(PARI) seq(n)={my(A=O(x*x^n)); Vec(prod(k=1, n, 1 + x^k + A) + prod(k=1, ceil(n/3), (1+x^(3*k-2)+A)*(1+x^(3*k-1)+A)*(1-x^(3*k)+A)))/2} \\ Andrew Howroyd, Jul 02 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jul 02 2020
STATUS
approved