login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335706
Decimal expansion of Sum_{primes p} 2*p*(2*p^3 - 9*p^2 - 1) * log(p)^2 / (p^3 + p - 2)^2.
3
2, 3, 5, 1, 0, 9, 7, 1, 4, 0, 7, 7, 8, 7, 6, 6, 2, 8, 3, 2, 3, 4, 1, 6, 6, 0, 8, 5, 2, 3, 3, 7, 7, 1, 2, 7, 8, 6, 3, 0, 3, 8, 4, 5, 2, 1, 8, 8, 5, 9, 6, 0, 2, 7, 4, 3, 4, 3, 3, 3, 2, 7, 7, 7, 1, 8, 6, 9, 1, 8, 0, 2, 0, 4, 5, 5, 1, 6, 8, 5, 5, 3, 0, 7, 2, 9, 6, 3, 5, 0, 1, 9, 1, 0, 9, 1, 9, 8, 3, 0, 5, 2, 7, 2, 4, 5
OFFSET
0,1
EXAMPLE
0.23510971407787662832341660852337712786303845218859602743433...
MATHEMATICA
ratfun = 2*p*(2*p^3 - 9*p^2 - 1) / (p^3 + p - 2)^2; zetas = 0; ratab = Table[konfun = Together[Simplify[ratfun - c*(p^power/(p^power - 1)^2)]]; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*(-Zeta'[power]^2/Zeta[power]^2 + Zeta''[power]/Zeta[power]) /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]^2*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}]
CROSSREFS
Sequence in context: A062007 A031067 A300392 * A339640 A031027 A134730
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jun 18 2020
STATUS
approved