The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335547 a(n) is the number of ways to tile a size n staircase polyomino with staircase polyominoes in the same direction as the size n staircase polyomino. 4
 1, 2, 5, 18, 94, 709, 7710, 120882, 2732104, 89015152, 4180822859, 283067837700, 27628050712667, 3887236104777699, 788428930992492718, 230523466443694083587, 97162501670167108808501, 59035492675117768533460333, 51708108674446390274283614578, 65288256486029805607741923173692 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A size-n staircase polynomo is a polyomino consisting of n left-aligned rows in increasing length of 1, 2, ..., n. LINKS Code Golf Stack Exchange user "Bubbler", Tiling a staircase with staircases. Rémy Sigrist, PARI program for A335547 EXAMPLE For n = 3 the a(3) = 5 tilings are: +---+          +---+          +---+          +---+ |   |          |   |          |   |          |   | +---+---+      +   +---+      +---+---+      +---+---+ |   |   |      |       |      |   |   |      |   |   | +---+---+---+, +---+---+---+, +   +---+---+, +---+   +---+, |   |   |   |  |   |   |   |  |       |   |  |   |       | +---+---+---+  +---+---+---+  +---+---+---+  +---+---+---+ +---+ |   | +   +---+ |       | +       +---+. |           | +---+---+---+ For n = 4 the a(4) = 5+5+3+3+2 = 18 tilings are: +---+              +---+              +---+ |   |              |   |              |   | +---+---+          +---+---+          +---+---+ |   |   |          |   |   |          |   |   | +---+---+---+      +---+---+---+      +---+---+---+ |   |   |   |      |   |   |   |      |   |   |   | +---+---+---+---+, +   +---+---+---+, +---+   +---+---+, |   |   |   |   |  |       |   |   |  |   |       |   | +---+---+---+---+  +---+---+---+---+  +---+---+---+---+ +---+              +---+              +---+ |   |              |   |              |   | +---+---+          +---+---+          +   +---+ |   |   |          |   |   |          |       | +---+---+---+      +---+---+---+      +---+---+---+ |   |   |   |      |   |   |   |      |   |   |   | +---+---+   +---+, +   +---+   +---+, +---+---+---+---+, |   |   |       |  |       |       |  |   |   |   |   | +---+---+---+---+  +---+---+---+---+  +---+---+---+---+ +---+              +---+              +---+ |   |              |   |              |   | +   +---+          +   +---+          +   +---+ |       |          |       |          |       | +---+---+---+      +---+---+---+      +---+---+---+ |   |   |   |      |   |   |   |      |   |   |   | +   +---+---+---+, +---+   +---+---+, +---+---+   +---+, |       |   |   |  |   |       |   |  |   |   |       | +---+---+---+---+  +---+---+---+---+  +---+---+---+---+ +---+              +---+              +---+ |   |              |   |              |   | +   +---+          +---+---+          +---+---+ |       |          |   |   |          |   |   | +---+---+---+      +   +---+---+      +   +---+---+ |   |   |   |      |       |   |      |       |   | +   +---+   +---+, +---+---+---+---+, +       +---+---+, |       |       |  |   |   |   |   |  |           |   | +---+---+---+---+  +---+---+---+---+  +---+---+---+---+ +---+              +---+              +---+ |   |              |   |              |   | +---+---+          +---+---+          +---+---+ |   |   |          |   |   |          |   |   | +   +---+---+      +---+   +---+      +---+   +---+ |       |   |      |   |       |      |   |       | +---+---+   +---+, +---+---+---+---+, +   +---+---+---+, |   |   |       |  |   |   |   |   |  |       |   |   | +---+---+---+---+  +---+---+---+---+  +---+---+---+---+ +---+              +---+              +---+ |   |              |   |              |   | +---+---+          +   +---+          +   +---+ |   |   |          |       |          |       | +---+   +---+      +       +---+      +       +---+ |   |       |      |           |      |           | +---+       +---+, +---+---+---+---+, +           +---+. |   |           |  |   |   |   |   |  |               | +---+---+---+---+  +---+---+---+---+  +---+---+---+---+ a(5) = 8+5+5+5+3+8+5+5+5+3+8+3+5+8+5+3+8+2 = 94. PROG (PARI) See Links section. CROSSREFS Cf. A334617, A335967, A336479. Sequence in context: A217389 A123310 A058119 * A075441 A187008 A333837 Adjacent sequences:  A335544 A335545 A335546 * A335548 A335549 A335550 KEYWORD nonn AUTHOR Seiichi Manyama, Sep 12 2020 EXTENSIONS More terms from Rémy Sigrist, Sep 13 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 13:35 EDT 2021. Contains 345112 sequences. (Running on oeis4.)