Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jun 04 2020 06:40:04
%S 0,1,3,5,11,15,23,27,37,47,55,107,111,119,155,215,223,239,411,431,471,
%T 479,495,549,631,943,951,959,991,1647,1887,1967,1983,2015,2543,2935,
%U 3703,3807,3935,3967,4031,6639,6895,7407,7871,7903,8063,8127,10207,13279
%N Positions of first appearances in A124771 = number of distinct contiguous subsequences of compositions in standard order.
%e The sequence together with the corresponding compositions begins:
%e 0: () 215: (1,2,2,1,1,1)
%e 1: (1) 223: (1,2,1,1,1,1,1)
%e 3: (1,1) 239: (1,1,2,1,1,1,1)
%e 5: (2,1) 411: (1,3,1,2,1,1)
%e 11: (2,1,1) 431: (1,2,2,1,1,1,1)
%e 15: (1,1,1,1) 471: (1,1,2,2,1,1,1)
%e 23: (2,1,1,1) 479: (1,1,2,1,1,1,1,1)
%e 27: (1,2,1,1) 495: (1,1,1,2,1,1,1,1)
%e 37: (3,2,1) 549: (4,3,2,1)
%e 47: (2,1,1,1,1) 631: (3,1,1,2,1,1,1)
%e 55: (1,2,1,1,1) 943: (1,1,2,2,1,1,1,1)
%e 107: (1,2,2,1,1) 951: (1,1,2,1,2,1,1,1)
%e 111: (1,2,1,1,1,1) 959: (1,1,2,1,1,1,1,1,1)
%e 119: (1,1,2,1,1,1) 991: (1,1,1,2,1,1,1,1,1)
%e 155: (3,1,2,1,1) 1647: (1,3,1,2,1,1,1,1)
%e The subsequences for n = 0, 1, 3, 5, 11, 15, 23, 27 are the following (0 = empty partition):
%e 0 0 0 0 0 0 0 0 0 0
%e 1 1 1 1 1 1 1 1 1
%e 11 2 2 11 2 2 2 2
%e 21 11 111 11 11 3 11
%e 21 1111 21 12 21 21
%e 211 111 21 32 111
%e 211 121 321 211
%e 2111 211 1111
%e 1211 2111
%e 21111
%t stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
%t seq=Table[Length[Union[ReplaceList[stc[n],{___,s___,___}:>{s}]]],{n,0,1000}];
%t Table[Position[seq,i][[1,1]]-1,{i,First/@Gather[seq]}]
%Y Positions of first appearances in A124771.
%Y Compositions where every subinterval has a different sum are A333222.
%Y Knapsack compositions are A333223.
%Y Cf. A000120, A003022, A029931, A066099, A070939, A124767, A124770, A325770, A334299, A334968.
%K nonn
%O 1,3
%A _Gus Wiseman_, Jun 03 2020