login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335279
Positions of first appearances in A124771 = number of distinct contiguous subsequences of compositions in standard order.
2
0, 1, 3, 5, 11, 15, 23, 27, 37, 47, 55, 107, 111, 119, 155, 215, 223, 239, 411, 431, 471, 479, 495, 549, 631, 943, 951, 959, 991, 1647, 1887, 1967, 1983, 2015, 2543, 2935, 3703, 3807, 3935, 3967, 4031, 6639, 6895, 7407, 7871, 7903, 8063, 8127, 10207, 13279
OFFSET
1,3
EXAMPLE
The sequence together with the corresponding compositions begins:
0: () 215: (1,2,2,1,1,1)
1: (1) 223: (1,2,1,1,1,1,1)
3: (1,1) 239: (1,1,2,1,1,1,1)
5: (2,1) 411: (1,3,1,2,1,1)
11: (2,1,1) 431: (1,2,2,1,1,1,1)
15: (1,1,1,1) 471: (1,1,2,2,1,1,1)
23: (2,1,1,1) 479: (1,1,2,1,1,1,1,1)
27: (1,2,1,1) 495: (1,1,1,2,1,1,1,1)
37: (3,2,1) 549: (4,3,2,1)
47: (2,1,1,1,1) 631: (3,1,1,2,1,1,1)
55: (1,2,1,1,1) 943: (1,1,2,2,1,1,1,1)
107: (1,2,2,1,1) 951: (1,1,2,1,2,1,1,1)
111: (1,2,1,1,1,1) 959: (1,1,2,1,1,1,1,1,1)
119: (1,1,2,1,1,1) 991: (1,1,1,2,1,1,1,1,1)
155: (3,1,2,1,1) 1647: (1,3,1,2,1,1,1,1)
The subsequences for n = 0, 1, 3, 5, 11, 15, 23, 27 are the following (0 = empty partition):
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
11 2 2 11 2 2 2 2
21 11 111 11 11 3 11
21 1111 21 12 21 21
211 111 21 32 111
211 121 321 211
2111 211 1111
1211 2111
21111
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
seq=Table[Length[Union[ReplaceList[stc[n], {___, s___, ___}:>{s}]]], {n, 0, 1000}];
Table[Position[seq, i][[1, 1]]-1, {i, First/@Gather[seq]}]
CROSSREFS
Positions of first appearances in A124771.
Compositions where every subinterval has a different sum are A333222.
Knapsack compositions are A333223.
Sequence in context: A244520 A034169 A217384 * A136977 A003529 A018667
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 03 2020
STATUS
approved