login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335077
a(n) sets a record for side length k of zero-triangle in a rotationally symmetrical XOR-triangle.
0
1, 11, 39, 543, 2391, 9559, 38231, 152919, 611671, 2446679, 9786711, 39146839, 156587351, 626349399, 2505397591, 10021590359, 40086361431, 160345445719, 641381782871, 2565527131479, 10262108525911, 41048434103639, 164193736414551, 656774945658199, 2627099782632791
OFFSET
1,2
COMMENTS
An XOR-triangle T(m) is an inverted 0-1 triangle formed by choosing a top row the binary rendition b(m) of m and having each entry in subsequent rows be the XOR of the two values above it, i.e., A038554(n) applied recursively until we reach a single bit. We may plot T(m) as an equilateral triangle, since each iteration decrements the binary integer length L of the output until we have L = 1.
The XOR function used here requires two inputs; if the inputs agree, the output is 0, else 1.
A rotationally-symmetrical XOR-triangle (RST) is one whose appearance is the same when rotated 120 degrees.
A zero triangle of side length k arises when we have a run of (k + 1) 1s in the preceding iteration.
This sequence contains m that produce T(m) with a recordsetting side length of its largest zero-triangle. For 1 < n < 3, T(a(n)) only has eccentric zero triangles. T(a(4)) has a singleton zero at center, thus a central zero triangle (CZT) of k = 1. For n > 4, all T(a(n)) have CZTs.
The number 543 = A281482(4); we observe that A281482(2^i) produces RSTs, and only for 0 <= i <= 2 do we have eccentric zero triangles larger than any possible CZT. For A281482(2^3) = 131583, the side length of its eccentric zero triangles prove much smaller than the largest possible CZT.
Since this sequence wants to maximize the side length k of the largest triangle, we see that the largest triangle possible is the CZT. Let j be the "frame width" or number of iterations required to generate the first run of 0s in the CZT. We note j >= 2, since j = 1 requires a run of (k + 1) ones delimited by at least 1 zero; such a width implies that these zeros occur at the beginning and end of b(m). However, beginning binary notation with a leading zero is not permitted. Therefore, if it is possible, we will see T(m) with j > 1.
The numbers that produce record-setting m are the smaller of the binary reverse of m, therefore binary weight favors the least significant digits. Thus we see a 1 followed by a number of zeros in a "prefix" A that, along with a suffix C, must have the same number of bits.
For RSTs with a CZT, we have only one way to produce a solid run of (k + 1) zeros, that is, by dithering bits, which necessitates paired 0 and 1, therefore, we have even k for n > 4.
A run-length formula for a(n) with n > 4 is 12..i(11)..3, meaning that we have 1 one, 2 zeros, any number i of paired 1-0 bits, and a run of 3 ones. Aside from the reversal of this pattern, which puts a greater binary weight in the most significant 3 bits, there is no other way to construct a smaller (or any) CZT with frame size j = 2.
This equates to linear recurrence kernel (5, -4) starting with {2391, 9559} (though 39 is part of the same trajectory).
FORMULA
a(1) = 1; for 2 <= n <= 4, a(n) = A281482(2^(n - 2)); a(5) = 2391, a(6) = 9559, for n > 6, a(n) = 5*a(n-1) - 4*a(n-2).
From Alejandro J. Becerra Jr., Jun 01 2020 : (Start)
For n > 4, a(n) = (5/3) + (7/3)*4^n.
G.f.: (4 - 9*x)/(4*x^2 - 5*x + 1) - 56*x^4 - 112*x^3 - 28*x^2 - 10*x - 4. (End)
EXAMPLE
XOR-triangles T(a(n)) for 2 <= n <= 5, with "." = 0, "@" = 1:
a(4) = 543
a(3) = 39 @ . . . . @ @ @ @ @
a(2) = 11 @ . . . @ . . . .
@ . . @ @ @ @ . . @ @ . . .
@ . @ @ @ . @ . . @ . @ . @ . .
@ @ . @ @ @ . @ @ @ @ @ .
. @ . . @ . . . . @
@ . @ . . . @
@ . . @
. @
a(5) = 2391 @
@ . . @ . @ . @ . @ @ @
@ . @ @ @ @ @ @ @ . .
@ @ . . . . . . @ .
. @ . . . . . @ @
@ @ . . . . @ .
. @ . . . @ @
@ @ . . @ .
. @ . @ @
@ @ @ .
. . @
. @
@
.
a(6) = 9559
@ . . @ . @ . @ . @ . @ @ @
@ . @ @ @ @ @ @ @ @ @ . .
@ @ . . . . . . . . @ .
. @ . . . . . . . @ @
@ @ . . . . . . @ .
. @ . . . . . @ @
@ @ . . . . @ .
. @ . . . @ @
@ @ . . @ .
. @ . @ @
@ @ @ .
. . @
. @
@
MATHEMATICA
With[{s = Rest[Import["https://oeis.org/A334769/b334769.txt", "Data"][[All, -1]] ]}, Map[With[{w = NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]}, If[Length@ # == 0, 1, Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #] &@ ReplacePart[ConstantArray[0, Max@ #[[All, 1]]], Map[#1 -> #2 & @@ # &, #]]] &@ Tally@ Flatten@ Array[If[# == 1, Map[If[First@ # == 1, Nothing, Length@ #] &, Split@ w[[#]] ], Map[If[First@ # == -1, Length@ #, Nothing] &, Split[w[[#]] - Most@ w[[# - 1]] ] ]] &, Length@ w]] /. -Infinity -> 0 &, s[[1 ;; 30]] ] ]
(* or *)
Join[{1}, Array[2^(# + 1)*(2^# + 1) - 1 &, 4, 1], LinearRecurrence[{5, -4}, {2391, 9559}, 21]]
(* or *)
Rest@ CoefficientList[Series[(12 - 27 x)/(12 x^2 - 15 x + 3) - 56 x^4 - 112 x^3 - 28 x^2 - 10 x - 4, {x, 0, 25}], x] (* Michael De Vlieger, Jun 01 2020 *)
KEYWORD
nonn
AUTHOR
Michael De Vlieger, May 24 2020
STATUS
approved