login
A334763
Ceiling of circumradius of triangle whose sides are consecutive Ulam numbers (A002858).
0
3, 4, 5, 6, 7, 9, 10, 14, 15, 19, 21, 24, 26, 29, 31, 34, 37, 40, 43, 45, 48, 52, 55, 58, 60, 63, 68, 72, 77, 80, 84, 87, 93, 99, 103, 104, 107, 110, 115, 118, 123, 126, 131, 134, 138, 139, 142, 146, 149, 153, 158, 168, 176, 182, 185, 190, 194, 200, 204, 208
OFFSET
2,1
COMMENTS
It has been proved that three consecutive Ulam numbers U(n) for n > 1 satisfy the triangle inequality. See Wikipedia link below. Consequently it is possible to create n-gons using n consecutive Ulam numbers. The sequence starts at offset 2 because using the first Ulam number generates a triangle with sides (1,2,3) that is degenerate with infinite circumradius.
Conjecture: Triangles whose sides are consecutive Ulam numbers are acute apart from (1,2,3), (2,3,4), (3,4,6), (4,6,8), (6,8,11) and (16,18,26).
LINKS
Eric Weisstein's World of Mathematics, Circumradius.
Eric Weisstein's World of Mathematics, Ulam Sequence.
Wikipedia, Ulam number.
FORMULA
Circumradius of a triangle with sides a, b, c is given by R = a*b*c/(4A) where the Area A is given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) and where s = (a+b+c)/2.
EXAMPLE
a(2)=3 because a triangle with sides 2,3,4 has area = (1/4)*sqrt((2+3+4)(2+3-4)(2-3+4)(-2+3+4)) = 2.904... and circumradius = 2*3*4/(4A) = 2.065...
MATHEMATICA
lst1=ReadList["https://oeis.org/A002858/b002858.txt", {Number, Number}]; lst={}; Do[{a, b, c}={lst1[[n]][[2]], lst1[[n+1]][[2]], lst1[[n+2]][[2]]}; s=(a+b+c)/2; A=Sqrt[s(s-a)(s-b)(s-c)]; R=a*b*c/(4 A); AppendTo[lst, Ceiling@R], {n, 2, 100}]; lst
CROSSREFS
Sequence in context: A298006 A026438 A026442 * A307712 A048869 A039051
KEYWORD
nonn
AUTHOR
Frank M Jackson, May 10 2020
STATUS
approved