login
A334632
Decimal expansion of Sum_{k>=0} (-1)^k / ((2*k)!)^2.
1
7, 5, 1, 7, 3, 4, 1, 8, 2, 7, 1, 3, 8, 0, 8, 2, 2, 8, 5, 5, 0, 9, 9, 8, 9, 0, 1, 2, 3, 0, 7, 4, 6, 5, 7, 5, 9, 5, 9, 5, 8, 6, 5, 7, 6, 6, 0, 7, 2, 9, 2, 0, 0, 2, 7, 3, 8, 8, 4, 4, 6, 8, 4, 6, 0, 2, 9, 2, 6, 9, 4, 7, 0, 7, 7, 7, 8, 1, 9, 3, 5, 2, 5, 2, 6, 7, 4, 6, 2, 3, 4, 6, 8, 0, 8, 2, 1, 5, 1, 5, 2, 7, 3, 7, 3, 4
OFFSET
0,1
REFERENCES
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 55, page 552.
LINKS
Eric Weisstein's World of Mathematics, Kelvin Functions.
Wikipedia, Kelvin functions.
FORMULA
Equals Re(BesselJ(0, 2*exp(3*Pi*i/4))).
EXAMPLE
0.75173418271380822855099890123074657595958657660729200273884...
MAPLE
evalf(Sum((-1)^k/(2*k)!^2, k=0..infinity), 120);
MATHEMATICA
RealDigits[KelvinBer[0, 2], 10, 120][[1]]
RealDigits[Re[Hypergeometric0F1Regularized[1, I]], 10, 120][[1]]
RealDigits[HypergeometricPFQ[{}, {1/2, 1/2, 1}, -1/16], 10, 120][[1]] (* Vaclav Kotesovec, Jul 19 2021 *)
PROG
(PARI) sumalt(k=0, (-1)^k/(2*k)!^2)
CROSSREFS
Cf. A334379.
Sequence in context: A254177 A377609 A021575 * A154870 A098687 A021137
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 10 2020
STATUS
approved