Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 30 2022 04:37:10
%S 1,-1,-1,-1,25,19,-209,-2269,2801,68615,371071,-2499641,-28306871,
%T -58645861,1964456495,15133179179,-37119981599,-1861550428529,
%U -9225044407169,110317002942095,2150185424201081,3953685082287779,-233260896605772881,-2920858244957587661,7649165533910291665
%N E.g.f.: exp(-(x + x^2 + x^3)).
%H Seiichi Manyama, <a href="/A334562/b334562.txt">Table of n, a(n) for n = 0..500</a>
%F a(0) = 1 and a(n) = - (n-1)! * Sum_{k=1..min(3,n)} k*a(n-k)/(n-k)!.
%F D-finite with recurrence a(n) + a(n-1) +2*(n-1)*a(n-2) +3*(n-1)*(n-2)*a(n-3)=0. - _R. J. Mathar_, May 07 2020
%t With[{nn=30},CoefficientList[Series[Exp[-(x+x^2+x^3)],{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Nov 26 2020 *)
%o (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(-x-x^2-x^3)))
%Y Column 3 of A334561.
%Y Cf. A118589, A334569.
%K sign
%O 0,5
%A _Seiichi Manyama_, May 06 2020