login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334562
E.g.f.: exp(-(x + x^2 + x^3)).
3
1, -1, -1, -1, 25, 19, -209, -2269, 2801, 68615, 371071, -2499641, -28306871, -58645861, 1964456495, 15133179179, -37119981599, -1861550428529, -9225044407169, 110317002942095, 2150185424201081, 3953685082287779, -233260896605772881, -2920858244957587661, 7649165533910291665
OFFSET
0,5
LINKS
FORMULA
a(0) = 1 and a(n) = - (n-1)! * Sum_{k=1..min(3,n)} k*a(n-k)/(n-k)!.
D-finite with recurrence a(n) + a(n-1) +2*(n-1)*a(n-2) +3*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, May 07 2020
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[-(x+x^2+x^3)], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Nov 26 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(-x-x^2-x^3)))
CROSSREFS
Column 3 of A334561.
Sequence in context: A215537 A104790 A291429 * A171806 A038822 A375335
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 06 2020
STATUS
approved