login
A334558
Numbers m such that m^2 + p^2 = k^2, with p > 0, where p = A007954(m) = the product of digits of m.
3
429, 437, 598, 1938, 3584, 3875, 5576, 6864, 16758, 36828, 43778, 47775, 47859, 56637, 56672, 82928, 91798, 129584, 156782, 165688, 165838, 178857, 215985, 379488, 655578, 798847, 1881576, 2893337, 3918768, 4816872, 5439798, 5829795, 7558299, 9675288, 11943887
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..147 (terms < 2*10^13)
EXAMPLE
429 is a term as p = 4*2*9 = 72 and 429^2 + 72^2 = 189225 = 435^2.
16758 is a term as p = 1*6*7*5*8 = 1680 and 16758^2 + 1680^2 = 283652964 = 16842^2.
PROG
(PARI) isok(m) = my(p=vecprod(digits(m))); p && issquare(m^2 + p^2); \\ Michel Marcus, May 06 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Scott R. Shannon, May 06 2020
STATUS
approved