login
A334542
Numbers m such that m^2 = p^2 + k^2, with p > 0, where p = A007954(m) = the product of digits of m.
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 58, 85, 375, 666, 1968, 1998, 3578, 3665, 3891, 4658, 4995, 6675, 7735, 18434, 27475, 28784, 46692, 56763, 58896, 59577, 59949, 76965, 186633, 186673, 795848, 949968, 965667, 1339575, 1587616, 1929798, 2765388, 2989584, 3674195, 4763568, 5762784, 36741656, 58988961, 134369685, 188959392
OFFSET
1,2
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..140 (terms < 2*10^13)
EXAMPLE
58 is a term as p = 5*8 = 40 and 58^2 = 3364 = 40^2 + 42^2.
3891 is a term as p = 3*8*9*1 = 216 and 3891^2 = 15139881 = 216^2 + 3885^2.
PROG
(PARI) isok(m) = my(p=vecprod(digits(m))); p && issquare(m^2 - p^2); \\ Michel Marcus, May 06 2020
CROSSREFS
Subsequence of A052382 (zeroless numbers).
Sequence in context: A062388 A070244 A302500 * A102493 A024661 A107070
KEYWORD
nonn,base
AUTHOR
Scott R. Shannon, May 05 2020
STATUS
approved