

A334523


Irregular triangle read by rows: row n contains the sequence n, p(n), s(p(n)), p(s(p(n))), p(p(s(p(n)))), s(p(p(s(p(n))))), ..., repeatedy applying (p,s,p) to n, where p = phi (A000010), s = sigma = (A000203), stopping after the first 1 is reached. If 1 is never reached, row n contains n, 1.


4



1, 1, 2, 1, 3, 2, 3, 2, 1, 4, 2, 3, 2, 1, 5, 4, 7, 6, 2, 3, 2, 1, 6, 2, 3, 2, 1, 7, 6, 12, 4, 2, 3, 2, 1, 8, 4, 7, 6, 2, 3, 2, 1, 9, 6, 12, 4, 2, 3, 2, 1, 10, 4, 7, 6, 2, 3, 2, 1, 11, 10, 18, 6, 2, 3, 2, 1, 12, 4, 7, 6, 2, 3, 2, 1, 13, 12, 28, 12, 4, 7, 6, 2, 3, 2, 1, 14, 6, 12, 4, 2, 3, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..94.
L. Alaoglu and P. ErdÅ‘s, A conjecture in elementary number theory, Bull. Amer. Math. Soc. 50 (1944), 881882.


EXAMPLE

Triangle begins:
1, 1,
2, 1,
3, 2, 3, 2, 1,
4, 2, 3, 2, 1,
5, 4, 7, 6, 2, 3, 2, 1,
6, 2, 3, 2, 1,
7, 6, 12, 4, 2, 3, 2, 1,
8, 4, 7, 6, 2, 3, 2, 1,
9, 6, 12, 4, 2, 3, 2, 1,
10, 4, 7, 6, 2, 3, 2, 1,
...
For row n=5, for example, we get 5 > phi(5) = 4 > sigma(4) = 7 > phi(7) = 6 > phi(6) = 2 > sigma(2) = 3 > phi(3) = 2 > phi(2) = 1 (stop).


CROSSREFS

See A032452, A334725 for other versions.
Cf. A000010, A000203, A334685, A334686.
Sequence in context: A026730 A318691 A075256 * A001480 A308117 A270755
Adjacent sequences: A334520 A334521 A334522 * A334524 A334525 A334526


KEYWORD

nonn,tabf


AUTHOR

N. J. A. Sloane, May 09 2020, following a suggestion from Amiram Eldar.


STATUS

approved



