The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333856 Irregular triangle read by rows: row n gives the members of the smallest nonnegative reduced residue system in the modified congruence modulo n by Brändli and Beyne, called mod* n. 2
 0, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 4, 1, 3, 1, 2, 3, 4, 5, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 1, 2, 4, 7, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 3, 7, 9, 1, 2, 4, 5, 8, 10, 1, 3, 5, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS The length of row n is A023022(n), for n >= 1, with A023022(1) = 1. See the Brändli-Beyne link for this mod* system. This reduced residue system mod* n will be called RRS*(n). The mod* n system is defined only for numbers coprime to n. The definition of mod*(a, n), for gcd(a, n) = 1, is mod(a, n) from RRS(n) given in A038566, if mod(a, n) <= floor(n/2) and mod(-a, n) from RRS(n) otherwise. E.g., mod*(17, 10) = mod(-17, 10) = 3 because mod(17, 10) = 7 > 10/2 = 5. mod*(22, 10) is not defined because gcd(22, 10) = 2, not 1. Compare this table with the one for the reduced residue system modulo n (called RRS(n)) from A038566. For n >= 3 RRS*(n) consists of the first half of the RRS(n) members. Each member j of RRS*(n) stands for a reduced representative class [j]* which is given by the union of the ordinary reduced representative classes [j] and [n-j] modulo n, for n >= 3, with j from the first half of the set RRS(n) given in row n of A038566 (but with 0 for n = 1). For n = 1: * =  (using A038566(1) = 0, not 1), representing all integers. For n = 2: * = , representing all odd integers. E.g., RRS*(5) = {1, 2} (always considered ordered), and * = {pm1, pm4, pm5, pm9, ...} (pm for + or -), and  * = {pm2, pm3, pm7, pm8, ...}. Hence RRS*(5) represents the same integers as RRS(5), but has only 2, not 4 elements (RRS*(5) is not equal to  RRS(5)). The modular arithmetic is multiplicative but not additive for mod* n. This is based on the fact that gcd(a*b, n) = 1 if gcd(a, n) = 1 = gcd(b, n) (not valid in general for gcd(a + b, n)). E.g., 2 = mod*(92, 9) = mod*(23*4, 9) = mod*(4*4, 10) = 2, because 2 <= 4, 5 > 4, 4 <= 4, 7 > 4, hence mod*(23, 9) = mod(-23, 9) = 4, mod*(4, 9) = 4 and mod*(16, 9) = mod(-16, 9) = 2. For n = 9 the class * consists of  union [9-2], i.e, {pm2, pm7, pm11, pm16, ...}. LINKS Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016. FORMULA T(1, 1) = 0, T(2, 1) = 1, and T(n, k) = A038566(n, k) for k = 1, 2, ..., A023022(n), for n >= 3. EXAMPLE The irregular triangle T(n, k) begins: n\k  1 2 3 4 5 6 7 8 9 ... ----------------------------------------- 1:   0 2:   1 3:   1 4:   1 5:   1 2 6:   1 7:   1 2 3 8:   1 3 9:   1 2 4 10:  1 3 11:  1 2 3 4 5 12:  1 5 13:  1 2 3 4 5 6 14:  1 3 5 15:  1 2 4 7 16:  1 3 5 7 17:  1 2 3 4 5 6 7 8 18:  1 5 7 19:  1 2 3 4 5 6 7 8 9 20:  1 3 7 9 ... ----------------------------------------- n = 9: 1 represents the union of the ordinary restricted residue classes  and [-1] = , called *, 2 represents the union of  and [-2] = , called *, and 4 represents the union of  and [-4] = , called *. One could replace * by *, * by * and * by *, but here the smallest numbers 1, 2, 4 are used for RRS*(9). Multiplication table for RRS*(9) (x is used here instead of *): 1 x 1 = 1, 1 x 2 = 2, 1 x 4 = 4; 2 x 1 = 2, 2 x 2 = 4, 2 x 4 = 1; 4 x 1 = 4, 4 x 2 = 1, 4 x 4 = 2. This is the (Abelian) cyclic group C_3. CROSSREFS Cf. A023022,  A038566 (RRS), A333857. Sequence in context: A025830 A083796 A037039 * A182972 A153452 A090680 Adjacent sequences:  A333853 A333854 A333855 * A333857 A333858 A333859 KEYWORD nonn,tabf,easy AUTHOR Wolfdieter Lang, Jun 26 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 01:40 EDT 2021. Contains 346302 sequences. (Running on oeis4.)