login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333824
a(n) = Sum_{d|n, n/d odd} (n/d)^d.
3
1, 1, 4, 1, 6, 10, 8, 1, 37, 26, 12, 82, 14, 50, 384, 1, 18, 811, 20, 626, 2552, 122, 24, 6562, 3151, 170, 20440, 2402, 30, 74900, 32, 1, 178512, 290, 94968, 538003, 38, 362, 1596560, 390626, 42, 4901060, 44, 14642, 16364502, 530, 48, 43046722, 823593, 9766251
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>=1} (2*k - 1) * x^(2*k - 1) / (1 - (2*k - 1)*x^(2*k - 1)).
a(2^n) = 1. - Seiichi Manyama, Apr 07 2020
a(n) = Sum_{d|n, d odd} d^(n/d). - Chai Wah Wu, Jul 09 2023
MATHEMATICA
Table[DivisorSum[n, (n/#)^# &, OddQ[n/#] &], {n, 50}]
nmax = 50; CoefficientList[Series[Sum[(2 k - 1) x^(2 k - 1)/(1 - (2 k - 1) x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) a(n) = sumdiv(n, d, if ((n/d)%2, (n/d)^d)); \\ Michel Marcus, Apr 07 2020
(Python)
from sympy import divisors
def A333824(n): return sum(d**(n//d) for d in divisors(n>>(~n & n-1).bit_length(), generator=True)) # Chai Wah Wu, Jul 09 2023
CROSSREFS
Sequence in context: A210228 A209161 A338171 * A083843 A094264 A298829
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2020
STATUS
approved