login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333518
a(n) = A000720(A006530(A334468(n))).
0
1, 2, 1, 2, 3, 1, 2, 2, 2, 3, 1, 2, 3, 3, 2, 2, 3, 4, 1, 4, 2, 3, 3, 2, 3, 2, 3, 4, 2, 3, 3, 1, 3, 4, 2, 3, 3, 2, 4, 4, 3, 4, 2, 3, 4, 2, 4, 3, 6, 3, 2, 3, 1, 3, 4, 2, 4, 3, 5, 6, 4, 3, 2, 4, 4, 4, 3, 7, 3, 4, 2, 4, 3, 3, 6, 4, 6, 2, 4, 4, 3, 5, 6, 8, 7, 3, 2, 5, 3, 4, 1, 4, 5, 3, 5, 4, 4, 2, 4, 5, 3, 5, 6, 3, 4
OFFSET
1,2
COMMENTS
Indices of the greatest prime factor of A334468(n).
Consider A334468, a list of numbers m = n+j such that j > 0 is also the smallest number such that n+j has no prime factor > j for some n and j = A217287(n).
Since prime q always contributes a novel prime divisor (i.e., q itself) to the set of distinct primes that divide at least 1 number i the range n + i (1 <= i <= j), the numbers m in A334468 are composite, and given the above, m is a product of relatively small prime factors.
EXAMPLE
Start with n = 1, the empty product. Incrementing n and storing the distinct prime factors each time, we encounter 2, which does not divide any previous number n. Therefore we proceed to n = 3, which is prime and its distinct prime divisor again does not divide any previous number. Finally, at 4, we have the distinct prime divisor 2, since 2 divides the product of the previous range {1, 2, 3}, we end the chain. Therefore 4 is the first term of this sequence.
We list row n of A217438 below, starting with n aligned in columns:
1 2 3
2 3
3 4 5
4 5 6 7
5 6 7
6 7
7 8 9 10 11
8 9 10 11
9 10 11
10 11 12 13 14
11 12 13 14 15
12 13 14 15
13 14 15
14 15
...
Adding 1 to the last numbers seen in all the rows, we generate the sequence A334468: {4, 6, 8, 12, 15, 16, ...}. Of these, we have greatest prime factors {2, 3, 2, 3, 5, 2, ...} with indices {1, 2, 1, 2, 3, 1, ...}.
Least indices of prime(k) in a(n):
i p(i) n a(n)
---------------------
1 2 1 4
2 3 2 6
3 5 5 15
4 7 18 63
5 11 59 308
6 13 49 234
7 17 68 374
8 19 84 475
9 23 292 2392
10 29 401 3625
11 31 518 4991
12 37 791 8547
...
MATHEMATICA
Block[{nn = 2^10, r}, r = Array[If[# == 1, 0, Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn]; Map[PrimePi@ FactorInteger[#][[-1, 1]] &, #] &@ Union@ Array[Block[{k = # + 1, s = r[[#]]}, While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k] &, nn - Ceiling@ Sqrt@ nn] ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, May 05 2020
STATUS
approved