|
|
A333477
|
|
Decimal expansion of largest negative solution to x! = x, or Gamma(x+1)=x, negated.
|
|
0
|
|
|
3, 1, 4, 3, 5, 8, 0, 8, 8, 8, 3, 4, 9, 9, 8, 0, 0, 5, 8, 6, 9, 4, 3, 5, 8, 7, 8, 1, 8, 2, 0, 2, 2, 7, 8, 9, 9, 5, 6, 6, 6, 6, 9, 6, 0, 4, 0, 6, 1, 5, 5, 7, 3, 4, 5, 7, 7, 8, 9, 2, 4, 9, 0, 2, 4, 2, 8, 6, 4, 2, 9, 5, 3, 5, 6, 3, 8, 2, 5, 8, 9, 0, 7, 3, 9, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Fixed point for Gamma(x+1) closest to 1 and 2.
By a mathematical coincidence, the negated expansion of the number is within 0.0633%, or 1 part in 1580 from Pi. Likewise, this constant is 1 part in 1580 away from -Pi.
|
|
LINKS
|
Table of n, a(n) for n=1..86.
Eric Weisstein's World of Mathematics, Gamma Function.
|
|
EXAMPLE
|
x = -3.1435808883499800586943587818...
|
|
MATHEMATICA
|
RealDigits[x /. FindRoot[Gamma[x + 1] == x, {x, -3.1}, WorkingPrecision -> 100], 10, 100][[1]] (* Vaclav Kotesovec, Apr 18 2020 *)
|
|
PROG
|
(PARI) solve(x=3.1, 3.2, gamma(1-x)+x) \\ Charles R Greathouse IV, Apr 18 2020
|
|
CROSSREFS
|
Sequence in context: A113415 A332801 A054019 * A230877 A326041 A209613
Adjacent sequences: A333474 A333475 A333476 * A333478 A333479 A333480
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Eliora Ben-Gurion, Mar 27 2020
|
|
STATUS
|
approved
|
|
|
|