The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333420 Table T(n,k) read by upward antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. 2
 1, 2, 3, 6, 25, 6, 24, 343, 110, 10, 120, 6561, 3375, 324, 15, 720, 161051, 144400, 17576, 756, 21, 5040, 4826809, 7962624, 1336336, 64000, 1521, 28, 40320, 170859375, 535387328, 130691232, 7595536, 185193, 2756, 36, 3628800, 6975757441 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A dual sequence to A331889.    k         1          2         3         4       5        6         7       8       9   -------------------------------------------------------------------------------------- n  1|        1          3         6        10      15       21        28      36      45    2|        2         25       110       324     756     1521      2756    4624    7310    3|        6        343      3375     17576   64000   185193    456533 1000000 2000376    4|       24       6561    144400   1336336 7595536 31640625 106131204    5|      120     161051   7962624 130691232    6|      720    4826809 535387328    7|     5040  170859375    8|    40320 6975757441    9|  3628800   10| 39916800 LINKS Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020. FORMULA T(n,k) <= floor((k*(k*n+1)/2)^n) with equality if k = 2*t+n*u for nonnegative integers t and u. T(n,1) = n! = A000142(n). T(1,k) = k*(k+1)/2 = A000217(k). T(n,2) = (2*n+1)^n = A085527(n). If n is even, k is odd and k >= n-1, then T(n,k) = ((k^2*(k*n+1)^2-1)/4)^(n/2). PROG (Python) from itertools import combinations, permutations from sympy import factorial def T(n, k): # T(n, k) for A333420     if k == 1:         return int(factorial(n))     if n == 1:         return k*(k+1)//2     if k % 2 == 0 or (k >= n-1 and n % 2 == 1):         return (k*(k*n+1)//2)**n     if k >= n-1 and n % 2 == 0 and k % 2 == 1:         return ((k**2*(k*n+1)**2-1)//4)**(n//2)     nk = n*k     nktuple = tuple(range(1, nk+1))     nkset = set(nktuple)     count = 0     for firsttuple in combinations(nktuple, n):         nexttupleset = nkset-set(firsttuple)         for s in permutations(sorted(nexttupleset), nk-2*n):             llist = sorted(nexttupleset-set(s), reverse=True)             t = list(firsttuple)             for i in range(0, k-2):                 itn = i*n                 for j in range(n):                         t[j] += s[itn+j]             t.sort()             w = 1             for i in range(n):                 w *= llist[i]+t[i]             if w > count:                 count = w     return count CROSSREFS Cf. A000142, A000217, A085527, A331889. Sequence in context: A099000 A032540 A063728 * A296259 A344935 A000341 Adjacent sequences:  A333417 A333418 A333419 * A333421 A333422 A333423 KEYWORD nonn,more,tabl AUTHOR Chai Wah Wu, Mar 23 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 02:34 EDT 2022. Contains 356204 sequences. (Running on oeis4.)