login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333290
Irregular triangle read by rows: coefficients b_{r,j} (r>=1, j>=0) arising from an expansion of the partition function.
2
1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 0, 2, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 1, 1, -1, 1, -1, -1, 0, 0, 1, 0, 2, 0, -1, -1, -1, -1, 0, 2, 0, 1, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 0, 1, 1, 0, -1, -1, -2, 0, 0, 0, 2, 1, 1, 0, -1, -1, 0, -1, 0, 0, 1, 1, -1, 1, -1, -1, 0, 0, 1, 0, 1, 0, 1, 0, -1, -2, -1, 0, -1, 1
OFFSET
1,20
COMMENTS
Is this (apart from offset) the same as A231599? - R. J. Mathar, Mar 21 2020
LINKS
Mircea Merca and Maxie D. Schmidt, The partition function p(n) in terms of the classical Möbius function, Ramanujan J (2019) 49:87-96.
EXAMPLE
Triangle begins:
1,
1,-1,
1,-1,-1,1,
1,-1,-1,0,1,1,-1,
1,-1,-1,0,0,2,0,0,-1,-1,1,
1,-1,-1,0,0,1,1,1,-1,-1,-1,0,0,1,1,-1,
...
MAPLE
A333290 := proc(r, j)
if r < 1 then
0 ;
elif r = 1 then
if j= 0 then
1;
else
0 ;
end if;
elif j < r-1 then
procname(r-1, j) ;
else
procname(r-1, j) -procname(r-1, j-r+1) ;;
end if;
end proc: # R. J. Mathar, Mar 21 2020
MATHEMATICA
b[r_, j_] := b[r, j] = Which[r < 1, 0, r == 1, If[j == 0, 1, 0], j < r-1, b[r-1, j], True, b[r-1, j] - b[r-1, j-r+1]];
Table[b[r, j], {r, 1, 9}, {j, 0, r(r-1)/2}] // Flatten (* Jean-François Alcover, Apr 29 2023, after R. J. Mathar *)
CROSSREFS
Cf. A333289.
Sequence in context: A241035 A140698 A231599 * A321924 A124764 A151899
KEYWORD
sign,tabf
AUTHOR
N. J. A. Sloane, Mar 20 2020
STATUS
approved