OFFSET
1,2
LINKS
Mathilde Bouvel, Philippe Gambette and Marefatollah Mansouri, Maple worksheet
Mathilde Bouvel, Philippe Gambette and Marefatollah Mansouri, Counting Phylogenetic Networks of level 1 and 2, Version 3, arXiv:1909.10460 [math.CO], 2019.
Sean A. Irvine, Java program (github)
FORMULA
E.g.f. satisfies U(z) = z*f(U(z)) where f(z) = 1 / (1 - (3*z^5-16*z^4+32*z^3-30*z^2+12*z)/(4*(1-z)^4)) [from Bouvel, Gambette, and Mansouri]. - Sean A. Irvine, Apr 01 2020
EXAMPLE
a(3) = 135 is the number of unrooted level-2 phylogenetic networks with 4 labeled leaves.
MAPLE
# (See Links)
# second Maple program:
f:= z-> 1/(1-(3*z^5-16*z^4+32*z^3-30*z^2+12*z)/(4*(1-z)^4)):
a:= n-> n!*coeff(series(RootOf(U=z*f(U), U), z, n+1), z, n):
seq(a(n), n=1..23); # Alois P. Heinz, Apr 01 2020
MATHEMATICA
nmax = 16;
Module[{U, f, z},
U[_] = 0;
f[z_] := 1/(1 - (3*z^5 - 16*z^4 + 32*z^3 - 30*z^2 + 12*z)/(4*(1 - z)^4));
Do[U[z_] = z*f[U[z]] + O[z]^(nmax+1) // Normal, {nmax}];
Rest[CoefficientList[U[z], z]*Range[0, nmax]!]] (* Jean-François Alcover, Jan 31 2025 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Mathilde Bouvel, Mar 13 2020
STATUS
approved