login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332919
a(n) is the sum of the sums of squared digits of all n-digit numbers.
2
285, 5415, 79800, 1054500, 13110000, 156750000, 1824000000, 20805000000, 233700000000, 2593500000000, 28500000000000, 310650000000000, 3363000000000000, 36195000000000000, 387600000000000000, 4132500000000000000, 43890000000000000000, 464550000000000000000, 4902000000000000000000
OFFSET
1,1
FORMULA
a(n) = Sum_{k=10^(n-1)..10^n-1} A003132(k).
From Colin Barker, Mar 06 2020: (Start)
G.f.: 285*x*(1 - x) / (1 - 10*x)^2.
a(n) = 20*a(n-1) - 100*a(n-2) for n > 2.
a(n) = 57*2^(n-2) * 5^(n-1) * (1+9*n).
(End)
E.g.f.: (57/20)*(exp(10*x)*(1 + 90*x) - 1). - Stefano Spezia, Mar 06 2020
EXAMPLE
a(1) = Sum_{k=1..9} k^2 = A000330(9) = 285.
PROG
(PARI) for(d=1, 8, print1(sum(k=10^(d-1), 10^d-1, digits(k)*digits(k)~), ", "))
(PARI) Vec(285*x*(1 - x) / (1 - 10*x)^2 + O(x^40)) \\ Colin Barker, Mar 06 2020
CROSSREFS
Sequence in context: A209311 A176712 A225881 * A278629 A241970 A231422
KEYWORD
nonn,base,easy
AUTHOR
Hugo Pfoertner, Mar 06 2020
EXTENSIONS
More terms from Colin Barker, Mar 06 2020
STATUS
approved