OFFSET
1,1
LINKS
Colin Barker, Table of n, a(n) for n = 1..950
Index entries for linear recurrences with constant coefficients, signature (20,-100).
FORMULA
a(n) = Sum_{k=10^(n-1)..10^n-1} A003132(k).
From Colin Barker, Mar 06 2020: (Start)
G.f.: 285*x*(1 - x) / (1 - 10*x)^2.
a(n) = 20*a(n-1) - 100*a(n-2) for n > 2.
a(n) = 57*2^(n-2) * 5^(n-1) * (1+9*n).
(End)
E.g.f.: (57/20)*(exp(10*x)*(1 + 90*x) - 1). - Stefano Spezia, Mar 06 2020
EXAMPLE
a(1) = Sum_{k=1..9} k^2 = A000330(9) = 285.
PROG
(PARI) for(d=1, 8, print1(sum(k=10^(d-1), 10^d-1, digits(k)*digits(k)~), ", "))
(PARI) Vec(285*x*(1 - x) / (1 - 10*x)^2 + O(x^40)) \\ Colin Barker, Mar 06 2020
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Hugo Pfoertner, Mar 06 2020
EXTENSIONS
More terms from Colin Barker, Mar 06 2020
STATUS
approved