login
A332915
Decimal expansion of the constant W(1) + 1/W(1), where W is Lambert's function.
0
2, 3, 3, 0, 3, 6, 6, 1, 2, 4, 7, 6, 1, 6, 8, 0, 5, 8, 3, 2, 2, 5, 1, 7, 0, 4, 3, 9, 1, 6, 2, 0, 6, 2, 6, 3, 0, 1, 8, 9, 8, 3, 3, 7, 7, 3, 8, 5, 3, 9, 8, 6, 1, 4, 2, 7, 0, 5, 5, 8, 7, 9, 8, 4, 7, 7, 0, 3, 2, 1, 6, 4, 0, 2, 7, 3, 6, 8, 0, 3, 0, 3, 4, 8, 2, 3, 0
OFFSET
1,1
COMMENTS
The graph of the exponential function exp(x) moved to the right by W(1) + 1/W(1) touches the graph of the natural logarithm log(x) at point (x,y) = (1/W(1), W(1)) = (A030797, A030178).
FORMULA
Equals 2 + Integral_{x=0..1} W(x) dx. - Amiram Eldar, Jul 18 2021
EXAMPLE
2.33036612476168058322517043916206263018983377385398...
MAPLE
evalf[200](LambertW(1) + 1/LambertW(1));
MATHEMATICA
RealDigits[N[LambertW[1] + 1/LambertW[1], 120]][[1]] (* Vaclav Kotesovec, Mar 02 2020 *)
PROG
(PARI) my(x=lambertw(1)); x+1/x \\ Michel Marcus, Mar 02 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Martin Renner, Mar 02 2020
STATUS
approved