login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332814 a(n) is -1, 0, or +1 such that a(n) == A156552(n) (mod 3). 5
0, 1, -1, 0, 1, -1, -1, 1, 0, 0, 1, -1, -1, -1, 1, 0, 1, 1, -1, 1, 0, 0, 1, -1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 0, -1, 0, -1, -1, 0, 0, 1, 1, -1, 1, 1, 0, 1, -1, 0, 1, 1, -1, -1, -1, 0, -1, 0, -1, 1, 1, -1, 0, -1, 0, -1, 0, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, 0, -1, -1, 1, 1, 1, 0, -1, 0, 1, -1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

Index entries for sequences computed from indices in prime factorization

FORMULA

a(n) = A102283(A156552(n)).

If A329903(n) = 2, then a(n) = -1, otherwise a(n) = A329903(n).

a(n) = A332823(A332461(n)) = A332823(A332462(n)).

a(2^n) = A000035(n), for all n >= 0.

a(n^2) = 0, for all n >= 1.

a(A000040(n)) = (-1)^(n-1).

a(A003961(n)) = -a(n).

PROG

(PARI)

A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552

A332814(n) = { my(u=A156552(n)%3); if(2==u, -1, u); };

CROSSREFS

Cf. A000040, A003961, A102283, A156552, A329903, A332461, A332462, A332823.

Cf. A329609, A329604, A332812 for positions of 0's, +1's and -1's in this sequence.

Sequence in context: A188068 A181632 A105565 * A285418 A344617 A068717

Adjacent sequences:  A332811 A332812 A332813 * A332815 A332816 A332817

KEYWORD

sign

AUTHOR

Antti Karttunen, Mar 01 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 18:31 EDT 2021. Contains 346335 sequences. (Running on oeis4.)