login
A332802
a(n) is the smallest q such that the number of nonnegative k <= q, possessing the property that k + k*q - q is a square, is equal to 2^n.
1
0, 2, 7, 23, 119, 839, 9239, 120119, 2042039, 38798759, 892371479, 25878772919, 802241960519, 29682952539239, 1217001054108839, 52331045326680119, 2459559130353965639, 130356633908760178919, 7691041400616850556279, 469153525437627883933079, 31433286204321068223516379
OFFSET
0,2
FORMULA
a(n) = A102476(n) - 1. - Jinyuan Wang, Feb 25 2020
EXAMPLE
a(0) = 0 because 2^0 = 1 solution is 0 (where k=0).
a(1) = 2 because 2^1 = 2 solutions are 1 (1) and 4 (2).
a(2) = 7 because 2^2 = 4 solutions are 1 (1), 9 (2), 25(4), 49 (7).
a(3) = 23 because 2^3 = 8 solutions are 1 (1), 25 (2), 49 (3), 121 (60, 169 (8), 289 (13), 361 (16), 529 (23).
a(4) = 119 because 2^4 = 16 solutions are 1 (1), 121 (2), 361 (4), 841 (8), 961 (9), 1681 (15), 2401 (21), 3481 (30), 3721 (32), 5041 (43), 6241 (53), 7921 (67), 8281 (70), 10201 (86), 11881 (100), 14161 (119).
PROG
(PARI) a(n) = {my(q=0); while (sum(k=0, q, issquare(k + k*q - q)) != 2^n, q++); q; } \\ Michel Marcus, Feb 25 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(7) from Michel Marcus, Feb 25 2020
More terms from Jinyuan Wang, Feb 25 2020
STATUS
approved