login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332579
Number of integer partitions of n covering an initial interval of positive integers with non-unimodal run-lengths.
14
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 7, 8, 10, 14, 19, 22, 30, 36, 43, 56, 69, 80, 101, 121, 141, 172, 202, 234, 282, 332, 384, 452, 527, 602, 706, 815, 929, 1077, 1236, 1403, 1615, 1842, 2082, 2379, 2702, 3044, 3458, 3908, 4388, 4963, 5589, 6252
OFFSET
0,14
COMMENTS
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number of strict integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.
EXAMPLE
The a(10) = 1 through a(16) = 7 partitions:
33211 332111 3321111 333211 433211 443211 443221
33211111 3332111 4332111 3333211
332111111 33321111 4432111
3321111111 33322111
43321111
333211111
33211111111
MATHEMATICA
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
unimodQ[q_]:=Or[Length[q]<=1, If[q[[1]]<=q[[2]], unimodQ[Rest[q]], OrderedQ[Reverse[q]]]];
Table[Length[Select[IntegerPartitions[n], normQ[#]&&!unimodQ[Length/@Split[#]]&]], {n, 0, 30}]
CROSSREFS
The complement is counted by A332577.
Not requiring the partition to cover an initial interval gives A332281.
The opposite version is A332286.
A version for compositions is A332743.
Partitions covering an initial interval of positive integers are A000009.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negated run-lengths are not unimodal are A332727.
Sequence in context: A329395 A065294 A240073 * A357490 A333778 A272919
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 25 2020
STATUS
approved