login
A332471
Numbers a(n) which count the linear extensions of the zigzag poset Z of length 2n where each minimal element in Z additionally covers a new element.
2
1, 16, 1036, 174664, 60849880, 38013766336, 38705790148480, 59974794813746176, 134300248452273030400, 417431293378855977894400, 1743578543837236847348608000, 9530635895810801293384327628800, 66681092396823971746429574881638400, 586039304763336550135184327900472524800
OFFSET
1,2
COMMENTS
The poset corresponding to a(n) is defined by the following cover relations on elements {1,2,...,3n}: {3i-2 < 3i-1 : i = 1...n} and {3i-1 < 3i : i = 1...n} and {3i > 3i+2 : i = 1...n-1}.
This sequence is the first instance of a generalization of Euler Numbers defined in the Garver et al. reference. In general, C_p(n) is the number of linear extensions of the zigzag of 2n elements, where each minimal element additionally covers a path of length p. We have a(n) = C_1(n)
REFERENCES
R. P. Stanley, Enumerative combinatorics, 2nd ed., Vol. 1, Cambridge University Press, 2012.
LINKS
Alexander Garver, Stefan Grosser, Jacob Matherne and Alejandro Morales, Counting Linear Extensions of Posets with Determinants of Hook Lengths, arXiv:2001.08822 [math.CO], 2020.
GaYee Park, Naruse hook formula for linear extensions of mobile posets, arXiv:2104.11166 [math.CO], 2021.
FORMULA
a(n) = (3n)! * det(c_{i,j}) with 1<= i,j <= n, where c_{i,j} is the following matrix: for j >= i-1, c_{i,j} = Prod_{r=1...j-i+1} 1/(3r(3r-1)); otherwise c_{i,j} = 0. (Proved)
a(n) ~ (3*n)! * c * d^n, where d = 0.12759419022704514910843029597508608447727573534180502377044888068225153... and c = 1.3759920635975758250596557376465522105456574791399781031599409800963... - Vaclav Kotesovec, Feb 26 2020
EXAMPLE
a(2) = 6! * det({{1/(3!), 1/(6*5*3*2)},{1, 1/(3!)}}) = 16.
MAPLE
a:=(k)->(3*k)!*LinearAlgebra:-Determinant(Matrix(k, k, (i, j)->`if`(j>=i-1, mul(1/(3*r*(3*r-1)), r=1..j-i+1), 0)));
seq(a(k), k=1..10);
MATHEMATICA
nmax = 15; Table[(3*n)!*Det[Table[If[j>=i-1, Product[1/(3*r*(3*r-1)), {r, 1, j-i+1}], 0], {i, 1, n}, {j, 1, n}]], {n, 1, nmax}] (* Vaclav Kotesovec, Feb 26 2020 *)
PROG
(PARI) a(n) = (3*n)!*matdet(matrix(n, n, i, j, if (j>=i-1, prod(r=1, j-i+1, 1/(3*r*(3*r-1)))))); \\ Michel Marcus, Feb 20 2020
CROSSREFS
Removing the added elements to the zigzag, this sequence would match the Euler numbers A000111.
Sequence in context: A013735 A180376 A162008 * A195619 A348862 A029701
KEYWORD
nonn,easy
AUTHOR
Stefan Grosser, Feb 13 2020
STATUS
approved