login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A005940(1+(3*A156552(n))).
20

%I #23 Apr 11 2022 20:48:07

%S 1,4,9,10,25,16,49,30,21,36,121,22,169,100,81,90,289,40,361,250,225,

%T 196,529,66,55,484,105,490,841,64,961,270,441,676,625,154,1369,1156,

%U 1089,750,1681,144,1849,1210,39,1444,2209,198,91,84,1521,1690,2809,120,1225,1470,2601,2116,3481,34,3721,3364,1029,810,3025,400

%N a(n) = A005940(1+(3*A156552(n))).

%H Antti Karttunen, <a href="/A332449/b332449.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = A005940(1+(3*A156552(n))).

%F a(p) = p^2 for all primes p.

%F a(u) = A332451(u) and A010052(a(u)) = 1 for all squarefree numbers (A005117).

%F a(A003961(n)) = A003961(a(n)) = A005940(1+(6*A156552(n))).

%F From _Antti Karttunen_, Apr 10 2022: (Start)

%F a(n) = A347119(n) * A000290(A347120(n)) = A353270(n) * A353272(n).

%F a(A353269(n)) = 1 for all n.

%F (End)

%o (PARI)

%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940

%o A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552

%o A332449(n) = A005940(1+(3*A156552(n)));

%Y Cf. A329609 (terms sorted into ascending order).

%Y Cf. A000290, A003961, A005117 (positions of squares), A005940, A010052, A156552, A277010, A329603, A332450, A332451, A347119, A347120, A353267 [= A348717(a(n))], A353269, A353270 [= gcd(n, a(n))], A353271, A353272, A353273.

%Y Cf. also A332223.

%K nonn

%O 1,2

%A _Antti Karttunen_, Feb 14 2020