login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332412
a(n) is the real part of f(n) = Sum_{d_k > 0} 3^k * i^(d_k-1) where Sum_{k >= 0} 5^k * d_k is the base 5 representation of n and i denotes the imaginary unit. Sequence A332413 gives imaginary parts.
3
0, 1, 0, -1, 0, 3, 4, 3, 2, 3, 0, 1, 0, -1, 0, -3, -2, -3, -4, -3, 0, 1, 0, -1, 0, 9, 10, 9, 8, 9, 12, 13, 12, 11, 12, 9, 10, 9, 8, 9, 6, 7, 6, 5, 6, 9, 10, 9, 8, 9, 0, 1, 0, -1, 0, 3, 4, 3, 2, 3, 0, 1, 0, -1, 0, -3, -2, -3, -4, -3, 0, 1, 0, -1, 0, -9, -8, -9
OFFSET
0,6
COMMENTS
The representation of {f(n)} corresponds to the cross form of the Vicsek fractal.
As a set, {f(n)} corresponds to the Gaussian integers whose real and imaginary parts have not simultaneously a nonzero digit at the same place in their balanced ternary representations.
LINKS
Rémy Sigrist, Colored representation of f(n) for n = 0..5^6-1 in the complex plan (where the hue is function of n)
Wikipedia, Vicsek fractal
FORMULA
a(n) = 0 iff the n-th row of A031219 has only even terms.
a(5*n) = 3*a(n).
a(5*n+1) = 3*a(n) + 1.
a(5*n+2) = 3*a(n).
a(5*n+3) = 3*a(n) - 1.
a(5*n+4) = 3*a(n).
EXAMPLE
For n = 103:
- 103 = 4*5^2 + 3*5^0,
- so f(123) = 3^2 * i^(4-1) + 3^0 * i^(3-1) = -1 - 9*i,
- and a(n) = -1.
PROG
(PARI) a(n) = { my (d=Vecrev(digits(n, 5))); real(sum (k=1, #d, if (d[k], 3^(k-1)*I^(d[k]-1), 0))) }
CROSSREFS
See A332497 for a similar sequence.
Cf. A031219, A289813, A332413 (imaginary parts).
Sequence in context: A308430 A280136 A258451 * A333229 A164358 A275638
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Feb 12 2020
STATUS
approved