The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A332363 Triangle read by rows: T(m,n) = number of unstable threshold functions (the function u_{0,1}(m,n) of Alekseyev et al. 2015) for m >= n >= 2. 2
 1, 2, 7, 3, 11, 19, 4, 18, 31, 51, 5, 24, 42, 69, 95, 6, 33, 59, 98, 135, 191, 7, 41, 74, 124, 172, 243, 311, 8, 52, 94, 158, 219, 310, 397, 507, 9, 62, 114, 191, 265, 376, 482, 615, 747, 10, 75, 138, 233, 325, 462, 593, 758, 921, 1135 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 11. EXAMPLE Triangle begins: 1, 2, 7, 3, 11, 19, 4, 18, 31, 51, 5, 24, 42, 69, 95, 6, 33, 59, 98, 135, 191, 7, 41, 74, 124, 172, 243, 311, 8, 52, 94, 158, 219, 310, 397, 507, 9, 62, 114, 191, 265, 376, 482, 615, 747, 10, 75, 138, 233, 325, 462, 593, 758, 921, 1135, ... MAPLE VQ := proc(m, n, q) local eps, a, i, j; eps := 10^(-6); a:=0; for i from ceil(-m+eps) to floor(m-eps) do for j from ceil(-n+eps) to floor(n-eps) do if gcd(i, j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end; VS := proc(m, n) local a, i, j; a:=0; for i from 1 to m-1 do for j from 1 to n-1 do if gcd(i, j)=1 then a:=a+1; fi; od: od: a; end; # A331781 u01:=(m, n) -> 2*VQ(m/2, n/2, 1)+2-VS(m, n); # This sequence for m from 2 to 12 do lprint([seq(u01(m, n), n=2..m)]); od: CROSSREFS Cf. A332350, A332352, A331781. Main diagonal is A332364. Sequence in context: A185510 A304754 A091578 * A258249 A256448 A056756 Adjacent sequences:  A332360 A332361 A332362 * A332364 A332365 A332366 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Feb 11 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 08:18 EDT 2021. Contains 347469 sequences. (Running on oeis4.)