login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331811
a(n) is the next number after a(n-1) which cannot be represented in the form 2*a(i) and Sum_{j=1..n-1} b_j*a(j) where 0 < i < n, b_j = 1 or 0. The sequence starts: a(1) = 1; a(2) = 2; a(3) = 3; a(4) = 5.
3
1, 2, 3, 5, 12, 25, 49, 73, 171, 195, 512, 658, 1560, 1950, 4826, 6142, 14868, 18768, 45920, 58204, 141660, 179196, 437264, 553672, 1349328, 1707720, 4164392, 5271736, 12851568, 16267008, 39662048, 50205520, 122401584, 154935600, 377748224, 478159264, 1165778688, 1475649888
OFFSET
1,2
COMMENTS
This sequence is a complete sequence.
LINKS
Eric Weisstein's World of Mathematics, Complete Sequence
MATHEMATICA
Nest[Append[#, Block[{k = #[[-1]] + 1}, While[Nand[NoneTrue[#, k == 2 # &], FreeQ[Map[Total, Rest@ Subsets[#]], k]], k++]; k]] & @@ {#, Map[Total, Subsets[#]]} &, {1, 2, 3, 5}, 10] (* Michael De Vlieger, Jan 27 2020 *)
PROG
(PARI) upto(lim)={my(a=[1, 2, 3, 5], b=[]); for(i=1, lim, forsubset(#a, x, b=concat(b, [vecsum(vecextract(a, x))])); b=setminus(vecsort(b, , 8), a); for(j=1, #a, b=concat(b, [2*a[j]]); b=vecsort(b, , 8)); if(setsearch(b, i)==0, a=concat(a, [i]); a=vecsort(a, , 8)) ); a}
{ upto(200) }
CROSSREFS
(C++) See Links section.
Sequence in context: A003428 A191626 A030041 * A284910 A233231 A319912
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(13)-a(14) from Hugo Pfoertner, Jan 27 2020
More terms from Rémy Sigrist, Jan 28 2020
STATUS
approved