login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331793
Expansion of ((1 - 5*x)/sqrt(1 - 10*x + 9*x^2) - 1)/(8*x^2).
2
1, 10, 87, 740, 6285, 53550, 458115, 3934600, 33913881, 293244050, 2542684463, 22101612780, 192530903461, 1680415209270, 14692052109915, 128653303453200, 1128147127156785, 9905115333850650, 87066787614156807, 766127762539955700, 6747880819438628541
OFFSET
0,2
LINKS
FORMULA
a(n) = (2/(n+2)) * A331516(n) = Sum_{k=0..n} 4^k * binomial(n+1,k) * binomial(n+1,k+1).
n * (n+2) * a(n) = (n+1) * (5 * (2*n+1) * a(n-1) - 9 * n * a(n-2)) for n>1.
a(n) ~ 3^(2*n + 3) / (2^(5/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
a[n_] := Sum[4^k * Binomial[n + 1, k] * Binomial[n + 1, k + 1], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, May 05 2021 *)
PROG
(PARI) N=20; x='x+O('x^N); Vec(((1-5*x)/sqrt(1-10*x+9*x^2)-1)/(8*x^2))
(PARI) {a(n) = sum(k=0, n, 4^k*binomial(n+1, k)*binomial(n+1, k+1))}
CROSSREFS
Column 5 of A331791.
Cf. A331516.
Sequence in context: A218894 A251193 A198858 * A121115 A292998 A114648
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 26 2020
STATUS
approved