login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331666
Refactorable numbers (A033950) that are simultaneously arithmetic (A003601) and harmonic (A001599).
1
1, 672, 30240, 23569920, 45532800, 164989440, 447828480, 623397600, 1381161600, 1862023680, 2144862720, 3134799360, 3831421440, 13584130560, 14182439040, 16569653760, 21943595520, 22933532160, 34482792960, 35032757760, 40752391680, 53621568000, 56481384960
OFFSET
1,2
COMMENTS
Numbers m such that all values of sigma(m)/tau(m), m/tau(m) and m * tau(m)/sigma(m) are any integers (f, g, and h respectively).
Corresponding values of numbers f, g and h: (1, 84, 1260, 294624, 474300, 1178496, 2946240, 3298400, 5754840, 11784960, ...); (1, 28, 315, 73656, 118575, 257796, 699732, 721525, 1198925, 2909412, 1675674, ...); (1, 8, 24, 80, 96, 140, 152, 189, 240, 158, 260, 266, 220, 380, 384, 296, 392, ...).
Multiply-perfect numbers from this sequence are in A047728.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..118 (terms below 10^14)
EXAMPLE
For m = 672, f = sigma(m)/tau(m) = 2016/24 = 84; g = m/tau(m) = 672/24 = 28; h = m * tau(m)/sigma(m) = 672*24/2016 = 8.
MATHEMATICA
Select[Range[3*10^7], Divisible[#, (d = DivisorSigma[0, #])] && Divisible[(s = DivisorSigma[1, #]), d] && Divisible[#*d, s] &] (* Amiram Eldar, Jan 24 2020 *)
PROG
(Magma) [m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(m / NumberOfDivisors(m)) and IsIntegral(m * NumberOfDivisors(m) / SumOfDivisors(m))]
(PARI) is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(k % d) && !(s % d) && !((k * d) % s) ; } \\ Amiram Eldar, May 09 2024
CROSSREFS
Intersection of A033950 and A007340.
Sequence in context: A234481 A234476 A340864 * A245782 A047728 A297123
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 23 2020
STATUS
approved