login
A331595
a(n) = gcd(A122111(n), A241909(n)).
7
1, 2, 4, 3, 8, 3, 16, 5, 3, 3, 32, 5, 64, 3, 18, 7, 128, 15, 256, 5, 18, 3, 512, 7, 3, 3, 5, 5, 1024, 15, 2048, 11, 18, 3, 18, 7, 4096, 3, 18, 7, 8192, 15, 16384, 5, 50, 3, 32768, 11, 3, 45, 18, 5, 65536, 7, 108, 7, 18, 3, 131072, 7, 262144, 3, 50, 13, 108, 15, 524288, 5, 18, 45, 1048576, 11, 2097152, 3, 15, 5, 18, 15, 4194304, 11, 7, 3
OFFSET
1,2
FORMULA
a(n) = gcd(A122111(n), A241909(n)).
a(A241916(n)) = a(n).
MATHEMATICA
Array[If[# == 1, 1, GCD @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 82] (* Michael De Vlieger, Jan 24 2020, after JungHwan Min at A122111 *)
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
A241909(n) = if(1==n||isprime(n), 2^primepi(n), my(f=factor(n), h=1, i, m=1, p=1, k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k, 1]); m *= p^(i-h); h = i; if(f[k, 2]>1, f[k, 2]--, k++)); (p*m));
A331595(n) = gcd(A122111(n), A241909(n));
CROSSREFS
Cf. A122111, A241909, A241916, A331596 (number of distinct prime factors), A331597, A331598, A331599, A331600.
Cf. also A280489, A280491.
Sequence in context: A058330 A124256 A108503 * A347288 A324213 A052131
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 22 2020
STATUS
approved