login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331563
Number of labeled cyclic graphs with n edges and 2n vertices.
0
0, 0, 20, 1610, 129654, 11688369, 1194822915, 137766789810, 17758192128830, 2535895233070628, 397875362655895761, 68087081506276861665, 12626853606957534296975, 2523446241515288646389325
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Paw Graph
FORMULA
a(n) = A331505(2n) - A302112(n).
EXAMPLE
a(4) = 1610 since we have 3 non-isomorphic cyclic graphs with 4 edges and 8 nodes. (See illustration below.)
To compute a(4) we can consult A057500, which provides the number of labeled connected unicycles. Because A057500(4)=15, and knowing that there are 3 labeled squares, we have 15-3 = 12 Paw Graphs [see Weisstein link]. So graph 1 is labeled in 12 * C(8,4) = 840 ways. Graph 2 is labeled in 3* C(8,4) = 210 ways. A105599 gives 10 as the number of labeled forests with 5 nodes and 4 components, so graph 3 is labeled in 10 * C(8,3) = 560 ways. We have 840 + 210 + 560 = 1610.
.
graph 1 graph 2 graph 3 (triangle + forest with
5 nodes and 4 components)
*--* *--* *--* *
| /| | | | / |
|/ | | | |/ |
* * *--* * *
* * * * * * * * * * *
CROSSREFS
KEYWORD
nonn
AUTHOR
Washington Bomfim, Jan 20 2020
STATUS
approved