login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331539
a(n) gives the number of primes of form (2*n+1)*2^m + 1 where m satisfies 2^m <= 2*n+1.
1
1, 1, 1, 1, 3, 2, 1, 2, 1, 0, 2, 1, 2, 2, 2, 0, 1, 2, 2, 4, 1, 1, 1, 0, 1, 2, 2, 1, 2, 1, 1, 3, 3, 2, 2, 2, 2, 4, 1, 1, 3, 2, 2, 2, 1, 0, 3, 3, 2, 4, 1, 0, 3, 1, 1, 2, 2, 1, 3, 2, 0, 1, 2, 1, 2, 2, 2, 4, 1, 1, 4, 0, 1, 0, 2, 1, 2, 2, 0, 2, 2, 3, 5, 1, 1, 0, 1
OFFSET
0,5
COMMENTS
For each index n, let k = 2*n+1. Then a(n) gives the number of primes of form k*2^m + 1 that are NOT considered Proth primes (A080076) because their m are too small.
In the edge case n=0, so k=1, we count 1*2^0 + 1 = 2 as a non-Proth prime.
EXAMPLE
For n=10, we consider 21*2^m + 1, where m runs from 0 to 4 (the next value m=5 would make 2^m exceed 21). The number of cases where 21*2^m + 1 is prime, is 2, namely m=1 (prime 43) and m=4 (prime 337). So 2 primes means a(10)=2. Compare with the start of A032360, all k=21 primes.
MATHEMATICA
a[n_] := Sum[Boole @ PrimeQ[(2n+1)*2^m + 1], {m, 0, Log2[2n+1]}]; Array[a, 100, 0] (* Amiram Eldar, Jan 20 2020 *)
PROG
(PARI) a(n) = my(k=2*n+1); sum(m=0, logint(k, 2), ispseudoprime(k<<m+1))
CROSSREFS
Sequence in context: A245188 A137241 A376593 * A306287 A016457 A181715
KEYWORD
nonn
AUTHOR
Jeppe Stig Nielsen, Jan 19 2020
STATUS
approved