login
A331339
E.g.f.: 1 / (1 + log(1 - x - x^2)).
2
1, 1, 5, 32, 292, 3294, 44918, 714468, 13002456, 266275200, 6060498672, 151750887936, 4145522908272, 122690391196944, 3910569680464848, 133549150323123744, 4864927063250290176, 188297220693251438208, 7716800776602560577408
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k - 1)! * Lucas(k) * a(n-k).
a(n) ~ n! * 2^(n+1) * exp(n/2) / (sqrt(5*exp(1) - 4) * (sqrt(5*exp(1) - 4) - exp(1/2))^(n+1)). - Vaclav Kotesovec, Jan 26 2020
MAPLE
A331339 := proc(n)
option remember;
if n = 0 then
1;
else
add(binomial(n, k)*(k-1)!*A000204(k)*procname(n-k), k=1..n) ;
end if;
end proc:
seq(A331339(n), n=0..42) ; # R. J. Mathar, Aug 20 2021
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(1 + Log[1 - x - x^2]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! LucasL[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 14 2020
STATUS
approved