login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{primes p <= n} r_2(p-1)/4, where r_2(n) = A004018(n).
2

%I #19 Apr 23 2024 08:28:30

%S 0,1,2,2,3,3,3,3,3,3,5,5,5,5,5,5,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

%T 7,7,8,8,8,8,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,14,

%U 14,14,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,17,17,17,17,17,17,17,17

%N a(n) = Sum_{primes p <= n} r_2(p-1)/4, where r_2(n) = A004018(n).

%H Amiram Eldar, <a href="/A331135/b331135.txt">Table of n, a(n) for n = 1..10000</a>

%H Yoichi Motohashi, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1633.pdf">On the distribution of prime numbers which are of the form x^2+y^2+1</a>, Acta Arith. 16 (1969/70), 351-363. MR0288086 (44 #5284).

%t Accumulate[Table[If[PrimeQ[n], SquaresR[2, n-1], 0], {n, 1, 100}]/4] (* _Amiram Eldar_, Apr 23 2024 *)

%Y Cf. A004018, A331134.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Jan 11 2020