login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331121
a(n) is the smallest positive integer k for which tau(k) does not divide sigma(n).
0
2, 2, 4, 2, 6, 16, 4, 2, 2, 6, 16, 4, 4, 16, 16, 2, 6, 2, 4, 6, 4, 16, 16, 24, 2, 6, 4, 4, 6, 16, 4, 2, 16, 6, 16, 2, 4, 24, 4, 6, 6, 16, 4, 16, 6, 16, 16, 4, 2, 2, 16, 4, 6, 36, 16, 36, 4, 6, 24, 16, 4, 16, 4, 2, 16, 16
OFFSET
1,1
COMMENTS
Consecutive t satisfying the equation a(t) = 2 are consecutive elements of A028982 (squares and twice squares).
Conjecture: consecutive u satisfying the equation a(u) = 4 are consecutive elements of a sequence defined as follows: (A024614 \ A088535) \ A074384. The conjecture was checked for 10^6 consecutive integers.
EXAMPLE
a(10) = 6 because sigma(10) = 18 is divisible by (tau(1) = 1), (tau(2) = 2), (tau(3) = 2), (tau(4) = 3), (tau(5) = 2), and is not divisible by (tau(6) = 4).
MATHEMATICA
Array[Block[{k = 1}, While[Mod[DivisorSigma[1, #], DivisorSigma[0, k]] == 0, k++]; k] &, 66] (* Michael De Vlieger, Jan 31 2020 *)
PROG
(Maxima) a(n):=(for k:1 while mod(divsum(n), length(divisors(k))) = 0 do z:k, z+1) $ makelist(a(n), n, 1, 100, 1);
(PARI) a(n) = my(k=1, sn=sigma(n)); while ((sn % numdiv(k)) == 0, k++); k; \\ Michel Marcus, Jan 10 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Lechoslaw Ratajczak, Jan 10 2020
STATUS
approved