Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 06 2024 06:14:29
%S 1,2,2,2,2,4,2,4,2,4,2,4,2,4,4,4,2,4,2,4,4,4,2,8,2,4,4,4,2,8,2,4,4,4,
%T 4,4,2,4,4,8,2,8,2,4,4,4,2,8,2,4,4,4,2,8,4,8,4,4,2,8,2,4,4,8,4,8,2,4,
%U 4,8,2,8,2,4,4,4,4,8,2,8,4,4,2,8,4,4,4
%N The number of dual-Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the dual Zeckendorf expansion (A104326) of each s(i) contains only terms that are in the dual Zeckendorf expansion of r(i).
%C Dual-Zeckendorf-infinitary divisors are analogous to infinitary divisors (A077609) with dual Zeckendorf expansion instead of binary expansion.
%C First differs from A286324 at n = 32.
%H Amiram Eldar, <a href="/A331109/b331109.txt">Table of n, a(n) for n = 1..10000</a>
%F Multiplicative with a(p^e) = 2^A112310(e).
%e a(32) = 4 since 32 = 2^5 and the dual Zeckendorf expansion of 5 is 110, i.e., its dual Zeckendorf representation is a set with 2 terms: {2, 3}. There are 4 possible exponents of 2: 0, 2, 3 and 5, corresponding to the subsets {}, {2}, {3} and {2, 3}. Thus 32 has 4 dual-Zeckendorf-infinitary divisors: 2^0 = 1, 2^2 = 4, 2^3 = 8, and 2^5 = 32.
%t fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
%t dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 1, 2^Total[v[[i[[1, 1]] ;; -1]]]]];
%t f[p_, e_] := dualZeck[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%Y Cf. A037445, A038148, A074848, A077609, A104326, A112310, A286324, A318465.
%K nonn,mult
%O 1,2
%A _Amiram Eldar_, Jan 09 2020