login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331077
a(n) = Sum_{k = 1..n} [d(k)*d_3(k)], where d = A000005, d_3 = A007425.
1
1, 7, 13, 31, 37, 73, 79, 119, 137, 173, 179, 287, 293, 329, 365, 440, 446, 554, 560, 668, 704, 740, 746, 986, 1004, 1040, 1080, 1188, 1194, 1410, 1416, 1542, 1578, 1614, 1650, 1974, 1980, 2016, 2052, 2292, 2298, 2514, 2520, 2628, 2736, 2772, 2778, 3228, 3246, 3354, 3390, 3498, 3504, 3744, 3780, 4020, 4056
OFFSET
1,2
COMMENTS
For background references see A330570.
LINKS
E. C. Titchmarsh, Some problems in the analytic theory of numbers, The Quarterly Journal of Mathematics, Vol. 1 (1942), pp. 129-152.
FORMULA
a(n) ~ c * n * log(n)^5 /5!, where c = Product_{p prime} ((1-1/p)^2*(1+2/p)) = 0.286747428434478734107... (Titchmarsh, 1942). - Amiram Eldar, Apr 19 2024
MATHEMATICA
f[p_, e_] := (e+1)^2*(e+2)/2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[s, 100]] (* Amiram Eldar, Apr 19 2024 *)
PROG
(PARI) lista(nmax) = {my(s = 0); for(n = 1, nmax, s += vecprod(apply(e -> (e+1)^2*(e+2)/2, factor(n)[, 2])); print1(s, ", ")); } \\ Amiram Eldar, Apr 19 2024
CROSSREFS
Sequence in context: A046139 A023243 A335794 * A087196 A074963 A283937
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 10 2020
STATUS
approved